Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0055024, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530032

RESUMO

Human metapneumovirus (HMPV) is a primary cause of acute respiratory infection, yet there are no approved vaccines or antiviral therapies for HMPV. Early host responses to HMPV are poorly characterized, and further understanding could identify important antiviral pathways. Type III interferon (IFN-λ) displays potent antiviral activity against respiratory viruses and is being investigated for therapeutic use. However, its role in HMPV infection remains largely unknown. Here, we show that IFN-λ is highly upregulated during HMPV infection in vitro in human and mouse airway epithelial cells and in vivo in mice. We found through several immunological and molecular assays that type II alveolar cells are the primary producers of IFN-λ. Using mouse models, we show that IFN-λ limits lung HMPV replication and restricts virus spread from upper to lower airways but does not contribute to clinical disease. Moreover, we show that IFN-λ signaling is predominantly mediated by CD45- non-immune cells. Mice lacking IFN-λ signaling showed diminished loss of ciliated epithelial cells and decreased recruitment of lung macrophages in early HMPV infection along with higher inflammatory cytokine and interferon-stimulated gene expression, suggesting that IFN-λ may maintain immunomodulatory responses. Administration of IFN-λ for prophylaxis or post-infection treatment in mice reduced viral load without inflammation-driven weight loss or clinical disease. These data offer clinical promise for IFN-λ in HMPV treatment. IMPORTANCE: Human metapneumovirus (HMPV) is a common respiratory pathogen and often contributes to severe disease, particularly in children, immunocompromised people, and the elderly. There are currently no licensed HMPV antiviral treatments or vaccines. Here, we report novel roles of host factor IFN-λ in HMPV disease that highlight therapeutic potential. We show that IFN-λ promotes lung antiviral responses by restricting lung HMPV replication and spread from upper to lower airways but does so without inducing lung immunopathology. Our data uncover recruitment of lung macrophages, regulation of ciliated epithelial cells, and modulation of inflammatory cytokines and interferon-stimulated genes as likely contributors. Moreover, we found these roles to be distinct and non-redundant, as they are not observed with knockout of, or treatment with, type I IFN. These data elucidate unique antiviral functions of IFN-λ and suggest IFN-λ augmentation as a promising therapeutic for treating HMPV disease and promoting effective vaccine responses.

2.
Mucosal Immunol ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38176655

RESUMO

Respiratory viral infections, including human metapneumovirus (HMPV), remain a leading cause of morbidity and mortality in neonates and infants. However, the mechanisms behind the increased sensitivity to those respiratory viral infections in neonates are poorly understood. Neonates, unlike adults, have several anti-inflammatory mechanisms in the lung, including elevated baseline expression of programmed death ligand 1 (PD-L1), a ligand for the inhibitory receptor programmed cell death protein 1 (PD-1). We thus hypothesized that neonates would rely on PD-1:PD-L1 signaling to restrain antiviral CD8 responses. To test this, we developed a neonatal primary HMPV infection model using wild-type C57BL/6 (B6) and Pdcd1-/- (lacking PD-1) mice. HMPV-infected neonatal mice had increased PD-L1/PD-L2 co-expression on innate immune cells but a similar number of antigen-specific CD8+ T cells and upregulation of PD-1 to that of adult B6 mice. Neonatal CD8+ T cells had reduced interferon-gamma (IFN-γ), granzyme B, and interleukin-2 production compared with B6 adults. Pdcd1-/- neonatal CD8+ T cells had markedly increased production of IFN-γ and granzyme B compared with B6 neonates. Pdcd1-/- neonates had increased acute pathology with HMPV or influenza. Pdcd1-/- neonates infected with HMPV had long-term changes in pulmonary physiology with evidence of immunopathology and a persistent CD8+ T-cell response with increased granzyme B production. Using single-cell ribonucleic acid sequencing from a child lacking PD-1 signaling, a similar activated CD8+ T-cell signature with increased granzyme B expression was observed. These data indicate that PD-1 signaling critically limits CD8+ T-cell effector functions and prevents immunopathology in response to neonatal respiratory viral infections.

3.
Immunohorizons ; 7(11): 771-787, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015461

RESUMO

CD8+ T cell dysfunction contributes to severe respiratory viral infection outcomes in older adults. CD8+ T cells are the primary cell type responsible for viral clearance. With increasing age, CD8+ T cell function declines in conjunction with an accumulation of cytotoxic tissue-resident memory (TRM) CD8+ T cells. We sought to elucidate the role of PD-1 signaling on aged CD8+ T cell function and accumulation of CD8+ TRM cells during acute viral respiratory tract infection, given the importance of PD-1 regulating CD8+ T cells during acute and chronic infections. PD-1 blockade or genetic ablation in aged mice yielded improved CD8+ T cell granzyme B production comparable to that in young mice during human metapneumovirus and influenza viral infections. Syngeneic transplant and adoptive transfer strategies revealed that improved granzyme B production in aged Pdcd1-/- CD8+ T cells was primarily cell intrinsic because aged wild-type CD8+ T cells did not have increased granzyme B production when transplanted into a young host. PD-1 signaling promoted accumulation of cytotoxic CD8+ TRM cells in aged mice. PD-1 blockade of aged mice during rechallenge infection resulted in improved clinical outcomes that paralleled reduced accumulation of CD8+ TRM cells. These findings suggest that PD-1 signaling impaired CD8+ T cell granzyme B production and contributed to CD8+ TRM cell accumulation in the aged lung. These findings have implications for future research investigating PD-1 checkpoint inhibitors as a potential therapeutic option for elderly patients with severe respiratory viral infections.


Assuntos
Infecções Respiratórias , Viroses , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Granzimas , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1
4.
Immun Ageing ; 20(1): 40, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528458

RESUMO

BACKGROUND: Lower respiratory infections are a leading cause of severe morbidity and mortality among older adults. Despite ubiquitous exposure to common respiratory pathogens throughout life and near universal seropositivity, antibodies fail to effectively protect the elderly. Therefore, we hypothesized that severe respiratory illness in the elderly is due to deficient CD8+ T cell responses. RESULTS: Here, we establish an aged mouse model of human metapneumovirus infection (HMPV) wherein aged C57BL/6 mice exhibit worsened weight loss, clinical disease, lung pathology and delayed viral clearance compared to young adult mice. Aged mice generate fewer lung-infiltrating HMPV epitope-specific CD8+ T cells. Those that do expand demonstrate higher expression of PD-1 and other inhibitory receptors and are functionally impaired. Transplant of aged T cells into young mice and vice versa, as well as adoptive transfer of young versus aged CD8+ T cells into Rag1-/- recipients, recapitulates the HMPV aged phenotype, suggesting a cell-intrinsic age-associated defect. HMPV-specific aged CD8+ T cells exhibit a terminally exhausted TCF1/7- TOX+ EOMES+ phenotype. We confirmed similar terminal exhaustion of aged CD8+ T cells during influenza viral infection. CONCLUSIONS: This study identifies terminal CD8+ T cell exhaustion as a mechanism of severe disease from respiratory viral infections in the elderly.

5.
bioRxiv ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37333212

RESUMO

Respiratory viral infections remain a leading cause of morbidity and mortality. Using a murine model of human metapneumovirus (HMPV), we identified recruitment of a C1q-producing inflammatory monocyte population concomitant with viral clearance by adaptive immune cells. Genetic ablation of C1q led to reduced CD8 + T cell function. Production of C1q by a myeloid lineage was sufficient to enhance CD8 + T cell function. Activated and dividing CD8 + T cells expressed a putative C1q receptor, gC1qR. Perturbation of gC1qR signaling led to altered CD8 + T cell IFN-γ production and metabolic capacity. Autopsy specimens from fatal respiratory viral infections in children demonstrated diffuse production of C1q by an interstitial population. Humans with severe COVID-19 infection also demonstrated upregulation of gC1qR on activated and rapidly dividing CD8 + T cells. Collectively, these studies implicate C1q production from monocytes as a critical regulator of CD8 + T cell function following respiratory viral infection.

6.
Immunohorizons ; 7(6): 398-411, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261717

RESUMO

Human metapneumovirus (HMPV) is a leading cause of respiratory infection in adults >65 y. Nearly all children worldwide are seropositive for HMPV by age 5 y, but reinfections occur throughout life, and there is no licensed vaccine. Recurrent HMPV infection is mild and self-resolving in immunocompetent individuals. However, elderly individuals develop severe respiratory disease on HMPV reinfection that leads to a high risk for morbidity and mortality. In this study, we developed a mouse model to mirror HMPV reinfection in elderly humans. C57BL/6J mice were infected with HMPV at 6-7 wk old, aged in-house, and rechallenged with high-dose virus at 70 wk. Aged rechallenged mice had profound weight loss similar to primary infected mice, increased lung histopathology, and accumulated cytotoxic CD8+CD44+CD62L-CD69+CD103+ memory cells despite having undetectable lung virus titer. When aged mice 14 mo postinfection (p.i.) or young mice 5 wk p.i. were restimulated with HMPV cognate Ag to mimic epitope vaccination, aged mice had an impaired CD8+ memory response. Convalescent serum transfer from young naive or 5 wk p.i. mice into aged mice on day of infection did not protect. Aged mice vaccinated with UV-inactivated HMPV also exhibited diminished protection and poor CD8+ memory response compared with young mice. These results suggest aged individuals with HMPV reinfection have a dysregulated CD8+ memory T cell response that fails to protect and exacerbates disease. Moreover, aged mice exhibited a poor memory response to either epitope peptide or UV-inactivated vaccination, suggesting that aged CD8+ T cell dysfunction presents a barrier to effective vaccination strategies.


Assuntos
Metapneumovirus , Idoso , Animais , Humanos , Camundongos , Epitopos , Metapneumovirus/fisiologia , Camundongos Endogâmicos C57BL , Gravidade do Paciente , Reinfecção
7.
Ann N Y Acad Sci ; 1522(1): 60-73, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36722473

RESUMO

Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS-CoV-2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever-evolving viruses that develop resistance, leaving therapy efficacy either short-lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Respiratory Viruses: New Frontiers." Researchers presented new insights into viral biology and virus-host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.


Assuntos
COVID-19 , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Humanos , COVID-19/patologia , COVID-19/virologia , Interações entre Hospedeiro e Microrganismos , Influenza Humana/patologia , Influenza Humana/virologia , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios , SARS-CoV-2
8.
J Fungi (Basel) ; 8(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012851

RESUMO

Pneumocystis jirovecii is an important etiological agent of pneumonia that is underdiagnosed due to the inability to culture the organism. The 2019 PERCH study identified Pneumocystis as the top fungal cause of pneumonia in HIV-negative children using a PCR cutoff of 104 copies of Pneumocystis per mL of sample in nasopharyngeal/oropharyngeal (NP/OP) specimens. Given that Pneumocystis consists of an environmental ascus form and a trophic from (the latter is the form that attaches to the lung epithelium), it is possible that life-form-specific molecular assays may be useful for diagnosis. However, to accomplish this goal, these assays require genotypic information, as the current fungal genomic data are largely from the US and Europe. To genotype Pneumocystis across the globe, we developed an NGS-based genotyping assay focused on genes expressed in asci as well as trophs using PERCH throat swabs from Africa, Bangladesh, and Thailand, as well as North American samples. The NGS panel reliably detected 21 fungal targets in these samples and revealed unique genotypes in genes expressed in trophs, including Meu10, an ascospore assembly gene; two in mitochondrial gene ATP8, and the intergenic region between COX1 and ATP8. This assay can be used for enhanced Pneumocystis epidemiology to study outbreaks but also permits more accurate RT-CPR- or CRISPR-based assays to be performed to improve the non-bronchoscopic diagnosis of this under-reported fungal pathogen.

9.
Front Immunol ; 13: 863149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493465

RESUMO

Respiratory tract infections are a leading cause of morbidity and mortality in newborns, infants, and young children. These early life infections present a formidable immunologic challenge with a number of possibly conflicting goals: simultaneously eliminate the acute pathogen, preserve the primary gas-exchange function of the lung parenchyma in a developing lung, and limit long-term sequelae of both the infection and the inflammatory response. The latter has been most well studied in the context of childhood asthma, where multiple epidemiologic studies have linked early life viral infection with subsequent bronchospasm. This review will focus on the clinical relevance of respiratory syncytial virus (RSV), human metapneumovirus (HMPV), and rhinovirus (RV) and examine the protective and pathogenic host responses within the neonate.


Assuntos
Metapneumovirus , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Vírus , Criança , Pré-Escolar , Humanos , Imunidade , Lactente , Recém-Nascido
10.
J Allergy Clin Immunol Pract ; 10(1): 286-296.e3, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718217

RESUMO

BACKGROUND: Primary immunodeficiency disorders (PIDDs) describe a myriad of diseases caused by inherited defects within the immune system. As the number of identified genetic defects associated with PIDDs increases, understanding the incidence and outcomes of PIDD patients becomes imperative. OBJECTIVE: To characterize the frequency of new diagnoses, patterns of health care utilization, rates of hematopoietic stem cell transplantation (HSCT), and mortality in pediatric patients with PIDDs. METHODS: A retrospective cohort analysis of the Pediatric Health Information System database from 2004 to 2018 for pediatric inpatients with an International Classification of Diseases, Ninth and 10th Revisions (ICD-9/ICD-10). code associated with PIDD. RESULTS: A total of 17,234 patients with a PIDD were hospitalized from 2004 to 2018. There were 2.8 new PIDD diagnoses and 6.3 PIDD hospitalizations per 1,000 discharges; these metrics were unchanged during the study period. The number of new diagnoses for B-cell and antibody defects significantly increased over time. The number of new PIDD diagnoses significantly increased in adolescents or adults and decreased in infants. T-cell disorders had the highest number of intensive care unit admissions. There were 747 PIDD patients who underwent HSCT; complications of HSCT significantly decreased over time. Mortality rates significantly decreased in all PIDD patients and in patients receiving HSCT. CONCLUSIONS: The total hospitalizations and incidence of PIDDs within the hospitalized pediatric population were unchanged. There were significant changes in the class of PIDD diagnosed, the age at diagnosis, and health care utilization metrics. Mortality significantly decreased over time within the PIDD cohort.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Doenças da Imunodeficiência Primária , Adolescente , Criança , Estudos de Coortes , Humanos , Incidência , Estudos Retrospectivos
11.
J Fungi (Basel) ; 7(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947039

RESUMO

Emerging fungal infections are a major challenge in solid organ transplantation (SOT) and are associated with high morbidity and mortality. We report two cases of Malassezia restricta pneumonia in SOT recipients. Infections were diagnosed with molecular analysis and histology. Patients were treated with antifungal therapy and have fully recovered.

12.
Allergy Asthma Proc ; 42(5): 439-442, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256898

RESUMO

The patient was a 33-year-old man with a history of recurrent pneumonia, autism, bipolar disorder, hypothyroidism, intermittent asthma, and nonischemic cardiomyopathy attributed to cocaine use who was admitted with hypoxemic respiratory distress with bilateral infiltrates seen on a chest radiograph. He was treated for community-acquired pneumonia but progressed to respiratory failure that required intubation and broad-spectrum antibiotic therapy. His medical history was notable for short stature, abnormal facial features, and, since childhood, at least two pneumonias per year that required antibiotics. The initial evaluation for an underlying primary immunodeficiency found that the patient had normal quantitative immunoglobulin levels, with absent CD19+ B cells. This case highlighted the evaluation of the humoral immune system for hospitalized adult patients with recurrent infections as well as the use of genetic testing to diagnose rare immunodeficiency syndromes.


Assuntos
Pneumonia , Insuficiência Respiratória , Adulto , Antibacterianos/uso terapêutico , Dispneia , Humanos , Masculino , Pneumonia/diagnóstico , Recidiva , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/etiologia
13.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33491669

RESUMO

Pneumocystis is an important opportunistic fungus that causes pneumonia in children and immunocompromised individuals. Recent genomic data show that divergence of major surface glycoproteins may confer speciation and host range selectivity. On the other hand, immune clearance between mice and humans is well correlated. Thus, we hypothesized that humanize mice may provide information about human immune responses involved in controlling Pneumocystis infection. CD34-engrafted huNOG-EXL mice controlled fungal burdens to a greater extent than nonengrafted mice. Moreover, engrafted mice generated fungal-specific IgM. Fungal control was associated with a transcriptional signature that was enriched for genes associated with nonopsonic recognition of trophs (CD209) and asci (CLEC7A). These same genes were downregulated in CD4-deficient mice as well as twins with bare lymphocyte syndrome with Pneumocystis pneumonia.


Assuntos
Pneumonia por Pneumocystis/imunologia , Animais , Anticorpos Antifúngicos/biossíntese , Antígenos CD34/metabolismo , Moléculas de Adesão Celular/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Xenoenxertos , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Especificidade de Hospedeiro/imunologia , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina M/biossíntese , Lectinas Tipo C/genética , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Camundongos Transgênicos , Pneumocystis/imunologia , Pneumocystis/patogenicidade , Pneumonia por Pneumocystis/genética , Pneumonia por Pneumocystis/microbiologia , Receptores de Superfície Celular/genética , Especificidade da Espécie
15.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33077624

RESUMO

Klebsiella pneumoniae is a common cause of antibiotic-resistant pneumonia. Follistatin-like protein 1 (FSTL-1) is highly expressed in the lung and is critical for lung homeostasis. The role of FSTL-1 in immunity to bacterial pneumonia is unknown. Wild-type (WT) and FSTL-1 hypomorphic (Hypo) mice were infected with Klebsiella pneumoniae to determine infectious burden, immune cell abundance, and cytokine production. FSTL-1 Hypo/TCRδ-/- and FSTL-1 Hypo/IL17ra-/- were also generated to assess the role of γδT17 cells in this model. FSTL-1 Hypo mice had reduced K. pneumoniae lung burden compared with that of WT controls. FSTL-1 Hypo mice had increased Il17a/interleukin-17A (IL-17A) and IL-17-dependent cytokine expression. FSTL-1 Hypo lungs also had increased IL-17A+ and TCRγδ+ cells. FSTL-1 Hypo/TCRδ-/- displayed a lung burden similar to that of FSTL-1 Hypo and reduced lung burden compared with the TCRδ-/- controls. However, FSTL-1 Hypo/TCRδ-/- mice had greater bacterial dissemination than FSTL-1 Hypo mice, suggesting that gamma delta T (γδT) cells are dispensable for FSTL-1 Hypo control of pulmonary infection but are required for dissemination control. Confusing these observations, FSTL-1 Hypo/TCRδ-/- lungs had an increased percentage of IL-17A-producing cells compared with that of TCRδ-/- mice. Removal of IL-17A signaling in the FSTL-1 Hypo mouse resulted in an increased lung burden. These findings identify a novel role for FSTL-1 in innate lung immunity to bacterial infection, suggesting that FSTL-1 influences type-17 pulmonary bacterial immunity.


Assuntos
Proteínas Relacionadas à Folistatina/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunomodulação , Pneumonia Bacteriana/etiologia , Animais , Carga Bacteriana , Modelos Animais de Doenças , Suscetibilidade a Doenças , Proteínas Relacionadas à Folistatina/metabolismo , Imunofenotipagem , Interleucina-17/metabolismo , Infecções por Klebsiella/genética , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Knockout , Pneumonia Bacteriana/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
16.
Am J Respir Crit Care Med ; 201(8): 934-945, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31834999

RESUMO

Rationale: The role of FSTL-1 (follistatin-like 1) in lung homeostasis is unknown.Objectives: We aimed to define the impact of FSTL-1 attenuation on lung structure and function and to identify FSTL-1-regulated transcriptional pathways in the lung. Further, we aimed to analyze the association of FSTL-1 SNPs with lung disease.Methods: FSTL-1 hypomorphic (FSTL-1 Hypo) mice underwent lung morphometry, pulmonary function testing, and micro-computed tomography. Fstl1 expression was determined in wild-type lung cell populations from three independent research groups. RNA sequencing of wild-type and FSTL-1 Hypo mice identified FSTL-1-regulated gene expression, followed by validation and mechanistic in vitro examination. FSTL1 SNP analysis was performed in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease) cohort.Measurements and Main Results: FSTL-1 Hypo mice developed spontaneous emphysema, independent of smoke exposure. Fstl1 is highly expressed in the lung by mesenchymal and endothelial cells but not immune cells. RNA sequencing of whole lung identified 33 FSTL-1-regulated genes, including Nr4a1, an orphan nuclear hormone receptor that negatively regulates NF-κB (nuclear factor-κB) signaling. In vitro, recombinant FSTL-1 treatment of macrophages attenuated NF-κB p65 phosphorylation in an Nr4a1-dependent manner. Within the COPDGene cohort, several SNPs in the FSTL1 region corresponded to chronic obstructive pulmonary disease and lung function.Conclusions: This work identifies a novel role for FSTL-1 protecting against emphysema development independent of smoke exposure. This FSTL-1-deficient emphysema implicates regulation of immune tolerance in lung macrophages through Nr4a1. Further study of the mechanisms involving FSTL-1 in lung homeostasis, immune regulation, and NF-κB signaling may provide additional insight into the pathophysiology of emphysema and inflammatory lung diseases.


Assuntos
Proteínas Relacionadas à Folistatina/genética , Pulmão/diagnóstico por imagem , Enfisema Pulmonar/genética , Fumaça/efeitos adversos , Animais , Células Endoteliais/metabolismo , Proteínas Relacionadas à Folistatina/farmacologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Técnicas In Vitro , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Mutação , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/efeitos dos fármacos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Doença Pulmonar Obstrutiva Crônica/genética , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Fator de Transcrição RelA/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Microtomografia por Raio-X
17.
mSphere ; 4(5)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484742

RESUMO

Pneumocystis pneumonia is the most common serious opportunistic infection in patients with HIV/AIDS. Furthermore, Pneumocystis pneumonia is a feared complication of the immunosuppressive drug regimens used to treat autoimmunity, malignancy, and posttransplantation rejection. With an increasing at-risk population, there is a strong need for novel approaches to discover diagnostic and vaccine targets. There are multiple challenges to finding these targets, however. First, Pneumocystis has a largely unannotated genome. To address this, we evaluated each protein encoded within the Pneumocystis genome by comparisons to proteins encoded within the genomes of other fungi using NCBI BLAST. Second, Pneumocystis relies on a multiphasic life cycle, as both the transmissible form (the ascus) and the replicative form (the trophozoite [troph]) reside within the alveolar space of the host. To that end, we purified asci and trophs from Pneumocystis murina and utilized transcriptomics to identify differentially regulated genes. Two such genes, Arp9 and Sp, are differentially regulated in the ascus and the troph, respectively, and can be utilized to characterize the state of the Pneumocystis life cycle in vivoGsc1, encoding a ß-1,3-glucan synthase with a large extracellular domain previously identified using surface proteomics, was more highly expressed on the ascus form of Pneumocystis GSC-1 ectodomain immunization generated a strong antibody response that demonstrated the ability to recognize the surface of the Pneumocystis asci. GSC-1 ectodomain immunization was also capable of reducing ascus burden following primary challenge with Pneumocystis murina Finally, mice immunized with the GSC-1 ectodomain had limited fungal burden following natural transmission of Pneumocystis using a cohousing model.IMPORTANCE The current report enhances our understanding of Pneumocystis biology in a number of ways. First, the current study provided a preliminary annotation of the Pneumocystis murina genome, addressing a long-standing issue in the field. Second, this study validated two novel transcripts enriched in the two predominant life forms of Pneumocystis These findings allow better characterization of the Pneumocystis life cycle in vivo and could be valuable diagnostic tools. Furthermore, this study outlined a novel pipeline of -omics techniques capable of revealing novel antigens (e.g., GSC-1) for the development of vaccines against Pneumocystis.


Assuntos
Perfilação da Expressão Gênica , Pneumocystis/genética , Pneumocystis/imunologia , Pneumonia por Pneumocystis/diagnóstico , Proteômica , Animais , Antígenos de Fungos/genética , Antígenos de Fungos/imunologia , Feminino , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia por Pneumocystis/imunologia , Transcriptoma
18.
Clin Infect Dis ; 68(3): 426-434, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29920580

RESUMO

Background: Lyme disease is the most common reportable zoonotic infection in the United States. Recent data suggest spread of the Ixodes tick vector and increasing incidence of Lyme disease in several states, including Pennsylvania. We sought to determine the clinical presentation and healthcare use patterns for pediatric Lyme disease in western Pennsylvania. Methods: The electronic medical records of all patients with an International Classification of Disease, Ninth Revision, diagnosis of Lyme disease between 2003 and 2013 at Children's Hospital of Pittsburgh were individually reviewed to identify confirmed cases of Lyme disease. The records of 773 patients meeting these criteria were retrospectively analyzed for patient demographics, disease manifestations, and healthcare use. Results: An Lyme disease increased exponentially in the pediatric population of western Pennsylvania. There was a southwestward migration of Lyme disease cases, with a shift from rural to nonrural zip codes. Healthcare provider involvement evolved from subspecialists to primary care pediatricians and emergency departments (EDs). Patients from nonrural zip codes more commonly presented to the ED, while patients from rural zip codes used primary care pediatricians and EDs equally. Conclusions: The current study details the conversion of western Pennsylvania from a Lyme-naive to a Lyme-epidemic area, highlighting changes in clinical presentation and healthcare use over time. Presenting symptoms and provider type differed between those from rural and nonrural zip codes. By elucidating the temporospatial epidemiology and healthcare use for pediatric Lyme disease, the current study may inform public health measures regionally while serving as an archetype for other areas at-risk for Lyme disease epidemics.


Assuntos
Epidemias , Utilização de Instalações e Serviços/estatística & dados numéricos , Doença de Lyme/epidemiologia , Doença de Lyme/patologia , Topografia Médica , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Hospitais Pediátricos , Humanos , Incidência , Lactente , Recém-Nascido , Doença de Lyme/diagnóstico , Doença de Lyme/tratamento farmacológico , Masculino , Pennsylvania/epidemiologia , Estudos Retrospectivos , População Rural , População Urbana
19.
JCI Insight ; 3(12)2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29925696

RESUMO

Despite the discovery of key pattern recognition receptors and CD4+ T cell subsets in laboratory mice, there is ongoing discussion of the value of murine models to reflect human disease. Pneumocystis is an AIDS-defining illness, in which risk of infection is inversely correlated with peripheral CD4+ T cell counts. Due to medical advances in the control of HIV, the current epidemiology of Pneumocystis infection is predominantly due to primary human immunodeficiencies and immunosuppressive therapies. To this end, we found that every human genetic immunodeficiency associated with Pneumocystis infection that has been tested in mice recapitulated susceptibility. For example, humans with a loss-of-function IL21R mutation are severely immunocompromised. We found that IL-21R, in addition to CD4+ T cell intrinsic STAT3 signaling, were required for generating protective antifungal class-switched antibody responses, as well as effector T cell-mediated protection. Furthermore, CD4+ T cell intrinsic IL-21R/STAT3 signaling was required for CD4+ T cell effector responses, including IL-22 production. Recombinant IL-22 administration to Il21r-/- mice induced the expression of a fungicidal peptide, cathelicidin antimicrobial peptide, which showed in vitro fungicidal activity. In conclusion, SPF laboratory mice faithfully replicate many aspects of human primary immunodeficiency and provide useful tools to understand the generation and nature of effector CD4+ T cell immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Doenças do Sistema Imunitário/imunologia , Infecções por Pneumocystis/imunologia , Animais , Anti-Infecciosos/metabolismo , Antifúngicos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Subunidade alfa de Receptor de Interleucina-21/genética , Subunidade alfa de Receptor de Interleucina-21/metabolismo , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumocystis/imunologia , Infecções por Pneumocystis/genética , Infecções por Pneumocystis/patologia , Fator de Transcrição STAT3 , Transdução de Sinais
20.
Immunol Cell Biol ; 95(8): 656-665, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28377613

RESUMO

Follistatin-like protein 1 (FSTL-1) possesses several newly identified roles in mammalian biology, including interleukin (IL)-17-driven inflammation, though the mechanism underlying FSTL-1 influence on IL-17-mediated cytokine production is unknown. Using parallel in vitro bone marrow stromal cell models of FSTL-1 suppression, we employed unbiased microarray analysis to identify FSTL-1-regulated genes and pathways that could influence IL-17-dependent production of IL-6 and granulocyte colony-stimulating factor. We discovered that FSTL-1 modulates Il17rc gene expression. Specifically, FSTL-1 was necessary for Il17rc gene transcription, IL-17RC surface protein expression and IL-17-dependent cytokine production. This work identifies a mechanism by which FSTL-1 influences IL-17-driven inflammatory signaling in vitro and reveals a novel function for FSTL-1, as a modulator of gene expression. Thus enhanced understanding of the interplay between FSTL-1 and IL-17-mediated inflammation may provide insight into potential therapeutic targets of IL-17-mediated diseases and warrants ongoing study of in vivo models and clinical scenarios of FSTL-1-influenced diseases.


Assuntos
Proteínas Relacionadas à Folistatina/genética , Interleucina-17/metabolismo , Células-Tronco Mesenquimais/fisiologia , RNA Mensageiro/genética , Receptores de Interleucina/metabolismo , Animais , Células Cultivadas , Técnicas de Cultura Embrionária , Proteínas Relacionadas à Folistatina/metabolismo , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Estabilidade de RNA , RNA Interferente Pequeno/genética , Receptores de Interleucina/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...